CORRECTION TP page 110

Etude pHmétrique du taux d'avancement final d'une réaction

1) Préparation des solutions

- 1. Equation $CH_3COOH + H_2O = CH_3COO^- + H_3O^+$
- 2. Il s'agit d'une dilution: $n_{\text{mère}} = n_{\text{fille}}$ soit $c_{\text{mère}} v_{\text{mère}} = c_{\text{fille}} v_{\text{fille}}$ Pour la solution S_2 , il faut prélever $V_1 = \frac{C_2 V_2}{C_1} = \frac{5.10^{-3} \times 100}{5.10^{-2}} = 10 \, \text{mL}$ Pour la solution S_3 , il faut prélever $V_2 = \frac{C_3 V_3}{C_2} = \frac{5.10^{-4} \times 100}{5.10^{-3}} = 10 \, \text{mL}$

2) Mesures de pH

3. On effectue les mesures en commençant par la solution la moins concentrée pour minimiser les erreurs de mesure en cas de mauvais rinçage (ou oubli) de la sonde de pH.

Solutions	S ₃	S_2	S_I
рН	4,10	3,50	3,00
-log C	3,30	2,30	1,30

4.5. Si les réactions étaient totales, on aurait $[H_3O^+]_f$ =C et donc pH=-log C. Or, on remarque que pH>-logC donc il y a moins de H_3O^+ que prévu: les réactions sont limitées.

3) Taux d'avancement final

6. Influence de la concentration initiale:

Equa	ation	CH ₃ COOH	+ H ₂ O	= CH ₃ COO ⁻ -	+ H ₃ O ⁺
état	Avancement (mol)	Quantités (mol)			
initial	x=0	n_0	excès	0	0
intermédiaire	X	n ₀ -x	excès	X	X
final	X _{max}	$\mathbf{n}_0 \mathbf{-} \mathbf{x}_{\text{max}} = 0$	excès	X _{max}	X _{max}

Pour S₁:
$$x_{max}$$
= n_0 = $C_1 \times V = 5 \times 10^{-2} \times 0$, $1 = 5 \times 10^{-3}$ mol Pour S₂: x_{max} = n_0 = $C_2 \times V = 5 \times 10^{-3} \times 0$, $1 = 5 \times 10^{-4}$ mol Pour S₃: x_{max} = n_0 = $C_3 \times V = 5 \times 10^{-3} \times 0$, $1 = 5 \times 10^{-5}$ mol

7. Détermination de
$$x_f$$
: $x_f = n_f(H_3O^+) = [H_3O^+]_f \times V = 10^{-pH} \times V$

pour
$$S_1$$
: x_i = $10^{-3,00} \times 0$, $1 = 1 \times 10^{-4}$ mol pour S_2 : x_i = $10^{-3,50} \times 0$, $1 = 3,2 \times 10^{-5}$ mol pour S_3 : x_i = $10^{-4,10} \times 0$, $1 = 7,9 \times 10^{-6}$ mol

8. On a donc:

Solutions	S_3	S_2	S_{I}
x _{max} (mmol)	0,05	0,5	5
x _f (mmol)	7,9.10 ⁻³	3,2.10 ⁻²	1.10 ⁻¹
$\tau = x_f / x_{max}$	16%	6,4%	2,0%

- 9. Plus la solution est diluée, plus τ est grand, c'est-à-dire plus la transformation chimique est avancée.
- 2. Influence de la nature de l'acide

10.

 S_4 : couple HCOOH/HCOO⁻ et HCOOH + $H_2O = HCOO^- + H_3O^+$

 S_5 : couple NH_4^+ / NH_3 et $NH_4^+ + H_2O = NH_3 + H_3O^+$

11.

On mesure le pH de ces deux solutions et on détermine x_f pour 100 mL de solution par exemple; on calcule x_{max} puis on calcule le taux d'avancement final.

Valeurs mesurées: $pH_4 = 2,96$ et $pH_5 = 5,80$

• Calcul de x_{max}:

$$x_{max} = n_{max}(H_3O^+) = n(acide introduit) = C.V$$

pour S₄:
$$x_{max}$$
= C₄.V=5.10⁻³.0,1 = 5.10⁻⁴ mol pour S₅: x_{max} = C₅.V=5.10⁻³.0,1 = 5.10⁻⁴ mol

Détermination de x_f:

$$x_f = n_f(H_3O^+) = [H_3O^+]_f . V = 10^{-pH} . V$$

pour
$$S_4$$
: $x_f = 10^{-2.96}$.0,1 = 1,1.10⁻⁴ mol pour S_5 : $x_f = 10^{-5.81}$.0,1 = 1,6.10⁻⁷ mol

Calcul de τ:

pour
$$S_4$$
: $\tau = x_f/x_{max} = 1,1.10^{-4} / 5.10^{-4} = 22 \%$

pour S₅: $\tau = x_f/x_{max} = 1.6.10^{-7} / 5.10^{-4} = 0.032 \%$

 $\tau = 6.4\%$

et on avait (pour la même concentration au départ) la solution S₂ avec un troisième acide différent:

12.

Solution	S2	S4	S5
C (mol/L)	5,0×10 ⁻³	5,0×10 ⁻³	5,0×10 ⁻³
acide	éthanoïque	méthanoïque	ammonium
τ (%)	6,4	22	0,032

τ dépend donc de la nature de l'acide.