
Spectre du Soleil: DOCUMENTS COMPLEMENTAIRES

En couleur!

Document 1: spectre lumineux du Soleil

<u>Document 2:</u> spectre lumineux du Soleil en haute résolution.

Étude quantitative de la température de surface du Soleil:

Toutes les radiations émises par une étoile ne le sont pas avec la même puissance P. Pour le Soleil, par exemple :

λ (nm)	300	320	340	360	370	380	390	400	410	420	430	440	450
P (W/m³)	1,01	2,58	4,08	5,65	6,28	7,73	9,20	10,0	10,7	11,0	11,4	11,6	11,7
λ (nm)	460	480	500	550	600	650	700	750	800	900	1000	1100	1200
P (W/m³)	11,7	11,6	11,4	10,5	9,46	8,07	6,82	5,69	5,00	3,86	3,11	2,48	2,04

- Avec un tableur, tracer le graphe $P = f(\lambda)$.
- Évaluer la longueur d'onde pour laquelle la puissance rayonnée est maximale : $\lambda_{max} =$
- En déduire une valeur de la température superficielle du Soleil avec la loi de Wien :

$$\lambda_{max} \times T = 2.9 \times 10^{-3} \, m.K$$